Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 19(13)2022 06 25.
Article in English | MEDLINE | ID: covidwho-1911366

ABSTRACT

The COVID-19 epidemic has emerged as one of the biggest challenges, and the world is focused on preventing and controlling COVID-19. Although there is still insufficient understanding of how environmental conditions may impact the COVID-19 pandemic, airborne transmission is regarded as an important environmental factor that influences the spread of COVID-19. The natural ventilation potential (NVP) is critical for airborne infection control in the micro-built environment, where infectious and susceptible people share air spaces. Taking Wuhan as the research area, we evaluated the NVP in residential areas to combat COVID-19 during the outbreak. We determined four fundamental residential area layouts (point layout, parallel layout, center-around layout, and mixed layout) based on the semantic similarity model for point of interest (POI) picking. Our analyses indicated that the center-around and point layout had a higher NVP, while the mixed and parallel layouts had a lower NVP in winter and spring. Further analysis showed that the proportion of the worst NVP has been rising, while the proportion of the poor NVP remains very high in Wuhan. This study suggested the need to efficiently improve the residential area layout in Wuhan for better urban ventilation to combat COVID-19 without losing other benefits.


Subject(s)
COVID-19 , Pandemics , Built Environment , COVID-19/epidemiology , China/epidemiology , Disease Outbreaks , Humans , Pandemics/prevention & control , SARS-CoV-2
2.
BMC Infect Dis ; 20(1): 930, 2020 Dec 07.
Article in English | MEDLINE | ID: covidwho-962806

ABSTRACT

BACKGROUND: COVID-19 is a newly emerging disease caused by a novel coronavirus (SARS-CoV-2), which spread globally in early 2020. Asymptomatic carriers of the virus contribute to the propagation of this disease, and the existence of asymptomatic infection has caused widespread fear and concern in the control of this pandemic. METHODS: In this study, we investigated the origin and transmission route of SARS-CoV-2 in Anhui's two clusters, analyzed the role and infectiousness of asymptomatic patients in disease transmission, and characterized the complete spike gene sequences in the Anhui strains. RESULTS: We conducted an epidemiological investigation of two clusters caused by asymptomatic infections sequenced the spike gene of viruses isolated from 12 patients. All cases of the two clusters we investigated had clear contact histories, both from Wuhan, Hubei province. The viruses isolated from two outbreaks in Anhui were found to show a genetically close link to the virus from Wuhan. In addition, new single nucleotide variations were discovered in the spike gene. CONCLUSIONS: Both clusters may have resulted from close contact and droplet-spreading and asymptomatic infections were identified as the initial cause. We also analyzed the infectiousness of asymptomatic cases and the challenges to the current epidemic to provided information for the development of control strategies.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/transmission , China/epidemiology , Contact Tracing , Disease Hotspot , Disease Outbreaks , Female , Humans , Male , Molecular Epidemiology , Pandemics , Phylogeny , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL